coreboot
coreboot is an Open Source project aimed at replacing the proprietary BIOS found in most computers.
rtc.c
Go to the documentation of this file.
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 
3 /*
4  * From U-Boot 2016.05
5  */
6 
7 #include <console/console.h>
8 #include <rtc.h>
9 
10 #define FEBRUARY 2
11 #define STARTOFTIME 1970
12 #define SECDAY 86400L
13 #define SECYR (SECDAY * 365)
14 #define LEAP_YEAR(year) (((year) % 4 == 0 && (year) % 100 != 0) || (year) % 400 == 0)
15 #define DAYS_IN_YEAR(a) (LEAP_YEAR(a) ? 366 : 365)
16 #define DAYS_IN_MONTH(a) (month_days[(a) - 1])
17 
18 static const char *const weekdays[] = {
19  "Sun", "Mon", "Tues", "Wednes", "Thurs", "Fri", "Satur"
20 };
21 
22 /* Zeller's rule */
23 static int rtc_calc_weekday(struct rtc_time *tm)
24 {
25  /* In Zeller's rule, January and February are treated as if they
26  are months 13 and 14 of the previous year (March is still month 3) */
27  const int zyear = ((tm->mon < 3) ? tm->year - 1 : tm->year);
28  const int q = tm->mday;
29  const int m = (tm->mon < 3) ? tm->mon + 12 : tm->mon;
30  const int K = zyear % 100;
31  const int J = zyear / 100;
32 
33  /*
34  * Because of the way the modulo operator works with negative numbers,
35  * the traditional formulation of Zeller's rule must be modified
36  * slightly to make the numerator positive (i.e., add 5J instead of
37  * subtracting 2J). Also subtract 1 so that Sunday is day 0.
38  */
39  const int h = (q + (13 * (m + 1)) / 5
40  + K + (K / 4) + (J / 4) + (5 * J) - 1) % 7;
41 
42  tm->wday = h;
43  return 0;
44 }
45 
46 int rtc_to_tm(int tim, struct rtc_time *tm)
47 {
48  int month_days[12] = {
49  31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
50  };
51  register int i;
52  register long hms, day;
53 
54  day = tim / SECDAY;
55  hms = tim % SECDAY;
56 
57  /* Hours, minutes, seconds are easy */
58  tm->hour = hms / 3600;
59  tm->min = (hms % 3600) / 60;
60  tm->sec = (hms % 3600) % 60;
61 
62  /* Number of years in days */
63  for (i = STARTOFTIME; day >= DAYS_IN_YEAR(i); i++)
64  day -= DAYS_IN_YEAR(i);
65  tm->year = i;
66 
67  /* Number of months in days left */
68  if (LEAP_YEAR(tm->year))
69  DAYS_IN_MONTH(FEBRUARY) = 29;
70  for (i = 1; day >= DAYS_IN_MONTH(i); i++)
71  day -= DAYS_IN_MONTH(i);
72  DAYS_IN_MONTH(FEBRUARY) = 28;
73  tm->mon = i;
74 
75  /* Days are what is left over (+1) from all that */
76  tm->mday = day + 1;
77 
78  /* Determine the day of week */
79  return rtc_calc_weekday(tm);
80 }
81 
82 /*
83  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
84  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
85  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
86  *
87  * [For the Julian calendar (which was used in Russia before 1917,
88  * Britain & colonies before 1752, anywhere else before 1582,
89  * and is still in use by some communities) leave out the
90  * -year / 100 + year / 400 terms, and add 10.]
91  *
92  * This algorithm was first published by Gauss (I think).
93  *
94  * WARNING: this function will overflow on 2106-02-07 06:28:16 on
95  * machines where long is 32-bit! (However, as time_t is signed, we
96  * will already get problems at other places on 2038-01-19 03:14:08)
97  */
98 unsigned long rtc_mktime(const struct rtc_time *tm)
99 {
100  int mon = tm->mon;
101  int year = tm->year;
102  int days, hours;
103 
104  mon -= 2;
105  if (0 >= (int)mon) { /* 1..12 -> 11, 12, 1..10 */
106  mon += 12; /* Puts Feb last since it has leap day */
107  year -= 1;
108  }
109 
110  days = (unsigned long)(year / 4 - year / 100 + year / 400 +
111  367 * mon / 12 + tm->mday) +
112  year * 365 - 719499;
113  hours = days * 24 + tm->hour;
114  return (hours * 60 + tm->min) * 60 + tm->sec;
115 }
116 
117 void rtc_display(const struct rtc_time *tm)
118 {
119  printk(BIOS_INFO, "Date: %5d-%02d-%02d (%sday) Time: %2d:%02d:%02d\n",
120  tm->year, tm->mon, tm->mday,
121  (tm->wday < 0 || tm->wday > 6) ? "unknown " : weekdays[tm->wday],
122  tm->hour, tm->min, tm->sec);
123 }
124 
125 static int rtc_month_days(unsigned int month, unsigned int year)
126 {
127  int month_days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
128 
129  return month_days[month] + (LEAP_YEAR(year) && month == 2);
130 }
131 
132 int rtc_invalid(const struct rtc_time *tm)
133 {
134  if (tm->sec > 59 || tm->min > 59 || tm->hour > 23 || tm->mon == 0 || tm->mon > 12 ||
135  tm->year < 1970 || tm->mday > rtc_month_days(tm->mon - 1, tm->year))
136  return 1;
137  else
138  return 0;
139 }
#define printk(level,...)
Definition: stdlib.h:16
unsigned int year
Definition: edid.c:53
unsigned long rtc_mktime(const struct rtc_time *tm)
Definition: rtc.c:98
#define STARTOFTIME
Definition: rtc.c:11
#define DAYS_IN_YEAR(a)
Definition: rtc.c:15
int rtc_invalid(const struct rtc_time *tm)
Definition: rtc.c:132
#define SECDAY
Definition: rtc.c:12
static const char *const weekdays[]
Definition: rtc.c:18
static int rtc_calc_weekday(struct rtc_time *tm)
Definition: rtc.c:23
static int rtc_month_days(unsigned int month, unsigned int year)
Definition: rtc.c:125
#define DAYS_IN_MONTH(a)
Definition: rtc.c:16
#define FEBRUARY
Definition: rtc.c:10
void rtc_display(const struct rtc_time *tm)
Definition: rtc.c:117
int rtc_to_tm(int tim, struct rtc_time *tm)
Definition: rtc.c:46
#define LEAP_YEAR(year)
Definition: rtc.c:14
#define BIOS_INFO
BIOS_INFO - Expected events.
Definition: loglevel.h:113
Definition: rtc.h:6
int year
Definition: rtc.h:12
int hour
Definition: rtc.h:9
int mon
Definition: rtc.h:11
int min
Definition: rtc.h:8
int wday
Definition: rtc.h:13
int sec
Definition: rtc.h:7
int mday
Definition: rtc.h:10
#define m(clkreg, src_bits, pmcreg, dst_bits)