coreboot
coreboot is an Open Source project aimed at replacing the proprietary BIOS found in most computers.
alternate_cbfs.c
Go to the documentation of this file.
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 
3 #include <boot_device.h>
4 #include <console/console.h>
5 #include <soc/alternate_cbfs.h>
6 #include <soc/power.h>
7 #include <soc/spi.h>
8 #include <symbols.h>
9 
10 /* This allows USB A-A firmware upload from a compatible host in four parts:
11  * The first two are the bare BL1 and the coreboot boot block, which are just
12  * written to their respective loading addresses. These transfers are initiated
13  * by the IROM / BL1, so this code has nothing to do with them.
14  *
15  * The third transfer is a valid CBFS image that contains only the romstage,
16  * and must be small enough to fit into the PRE_RAM CBFS cache in
17  * IRAM. It is loaded when this function gets called in the boot block, and
18  * the normal CBFS code extracts the romstage from it.
19  *
20  * The fourth transfer is also a CBFS image, but can be of arbitrary size and
21  * should contain all available stages/payloads/etc. It is loaded when this
22  * function is called a second time at the end of the romstage, and copied to
23  * the romstage/ramstage CBFS cache in DRAM. It will reside there for the
24  * rest of the firmware's lifetime and all subsequent stages can just directly
25  * reference it there.
26  */
27 static int usb_cbfs_open(void)
28 {
30  return 0;
31 
32  static int first_run = 1;
33  int (*irom_load_usb)(void) = *irom_load_image_from_usb_ptr;
34 
35  if (!first_run)
36  return 0;
37 
38  if (!irom_load_usb()) {
39  printk(BIOS_EMERG, "Unable to load CBFS image via USB!\n");
40  return -1;
41  }
42 
43  /*
44  * We need to trust the host/irom to copy the image to our
45  * _cbfs_cache address... there is no way to control or even
46  * check the transfer size or target address from our side.
47  */
48 
49  printk(BIOS_DEBUG, "USB A-A transfer successful, CBFS image should now"
50  " be at %p\n", _cbfs_cache);
51  first_run = 0;
52  return 0;
53 }
54 
55 /*
56  * SDMMC works very similar to USB A-A: we copy the CBFS image into memory
57  * and read it from there. While SDMMC would also allow direct block by block
58  * on-demand reading, we might run into problems if we call back into the IROM
59  * in very late boot stages (e.g. after initializing/changing MMC clocks)... so
60  * this seems like a safer approach. It also makes it easy to pass our image
61  * down to payloads.
62  */
63 static int sdmmc_cbfs_open(void)
64 {
66  return 0;
67 
68  /*
69  * In the bootblock, we just copy the small part that fits in the buffer
70  * and hope that it's enough (since the romstage is currently always the
71  * first component in the image, this should work out). In the romstage,
72  * we copy until our cache is full (currently 12M) to avoid the pain of
73  * figuring out the true image size from in here. Since this is mainly a
74  * developer/debug boot mode, those shortcomings should be bearable.
75  */
76  const u32 count = REGION_SIZE(cbfs_cache) / 512;
77  static int first_run = 1;
78  int (*irom_load_sdmmc)(u32 start, u32 count, void *dst) =
80 
81  if (!first_run)
82  return 0;
83 
84  if (!irom_load_sdmmc(1, count, _cbfs_cache)) {
85  printk(BIOS_EMERG, "Unable to load CBFS image from SDMMC!\n");
86  return -1;
87  }
88 
89  printk(BIOS_DEBUG, "SDMMC read successful, CBFS image should now be"
90  " at %p\n", _cbfs_cache);
91  first_run = 0;
92  return 0;
93 }
94 
95 const static struct mem_region_device alternate_rdev =
97 
98 const struct region_device *boot_device_ro(void)
99 {
101  return &alternate_rdev.rdev;
102 
103  switch (exynos_power->om_stat & OM_STAT_MASK) {
104  case OM_STAT_SDMMC:
105  return &alternate_rdev.rdev;
106  case OM_STAT_SPI:
107  return exynos_spi_boot_device();
108  default:
109  printk(BIOS_EMERG, "Exynos OM_STAT value 0x%x not supported!\n",
111  return NULL;
112  }
113 }
114 
116 {
118  printk(BIOS_DEBUG, "Using Exynos alternate boot mode USB A-A\n");
119  usb_cbfs_open();
120  return;
121  }
122 
123  switch (exynos_power->om_stat & OM_STAT_MASK) {
124  case OM_STAT_SDMMC:
125  printk(BIOS_DEBUG, "Using Exynos alternate boot mode SDMMC\n");
126  sdmmc_cbfs_open();
127  break;
128  case OM_STAT_SPI:
130  break;
131  default:
132  printk(BIOS_EMERG, "Exynos OM_STAT value 0x%x not supported!\n",
134  }
135 }
#define OM_STAT_SDMMC
static void **const irom_load_image_from_usb_ptr
static u32 *const iram_secondary_base
#define OM_STAT_MASK
#define SECONDARY_BASE_BOOT_USB
static void **const irom_sdmmc_read_blocks_ptr
Definition: alternate_cbfs.h:7
#define OM_STAT_SPI
struct mem_pool cbfs_cache
Definition: cbfs.c:26
#define printk(level,...)
Definition: stdlib.h:16
static const struct mem_region_device alternate_rdev
const struct region_device * boot_device_ro(void)
static int sdmmc_cbfs_open(void)
void boot_device_init(void)
static int usb_cbfs_open(void)
#define REGION_SIZE(name)
Definition: symbols.h:10
#define BIOS_DEBUG
BIOS_DEBUG - Verbose output.
Definition: loglevel.h:128
#define BIOS_EMERG
BIOS_EMERG - Emergency / Fatal.
Definition: loglevel.h:25
#define MEM_REGION_DEV_RO_INIT(base_, size_)
Definition: region.h:208
#define ENV_ROMSTAGE_OR_BEFORE
Definition: rules.h:263
static struct exynos5_power *const exynos_power
Definition: power.h:52
void exynos_init_spi_boot_device(void)
Definition: spi.c:167
const struct region_device * exynos_spi_boot_device(void)
Definition: spi.c:172
#define NULL
Definition: stddef.h:19
uint32_t u32
Definition: stdint.h:51
uint32_t om_stat
Definition: power.h:30
struct region_device rdev
Definition: region.h:184
#define count
typedef void(X86APIP X86EMU_intrFuncs)(int num)